- Regional water observation mechanism
- Regional Cooperation Assessment
- Water Quality Monitoring (JP)
- Water scarcity and drought (JP)
- Groundwater (JP)
- Waste water reuse (JP)
- Shared Water Resources Management (JP)
- Linking rural development and water management (JP)
- Waste management
- Water institutions
- Climate Change
- Floods
- Desalination
- Right to Water
- Irrigation
- Satellite data
- Water reports & data
- Hydrology
- Sanitation
- Gender and IWRM
- ArabWAYS
- Non-Revenue Water
- Virtual Water & Water Footprint
- WANA Water Panel
- Water Demand
- Water Governance
- Water Pricing
- Water accounts
- Water nexus Energy
- Geosciences
- Rural Management
The Future of Seawater Desalination: Energy, Technology, and the Environment
In recent years, numerous large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources, and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants. Here, we review the possible reductions in energy demand by state-of-the-art seawater desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages.
A paper co-authored by William Phillip of the University of Notre Dame's Department of Chemical and Biomolecular Engineering and Menachem Elimelech, Robert Goizueta Professor of Environmental and Chemical Engineering at Yale University, appearing in this week's edition of the journal Science offers a critical review of the state of seawater desalination technology.
Elimelech and Phillip and examine how seawater desalination technology has advanced over the past 30 years, in what ways the state-of-the-art technology can be improved, and if seawater desalination is a sustainable technological solution to global water shortages.
"At present, one-third of the world's population lives in water stressed countries, Phillip said. "Increasing population, contamination of fresh water sources and climate change will cause this percentage to increase over the coming decade. Additionally, the social and ecological benefits of adequate fresh water resources are well-documented. Therefore, it is important to find a way to alleviate this stress with a sustainable solution."
The authors point out that in recent years, large-scale seawater desalination plants have been built in water-stressed countries to augment available water resources and construction of new desalination plants is expected to increase in the near future. Despite major advancements in desalination technologies, seawater desalination is still more energy intensive compared to conventional technologies for the treatment of fresh water. There are also concerns about the potential environmental impacts of large-scale seawater desalination plants.
In their Science paper, Elimelech and Phillip review the possible reductions in energy demand by state-of-the-art desalination technologies, the potential role of advanced materials and innovative technologies in improving the performance, and the sustainability of desalination as a technological solution to global water shortages.
The authors believe that there are important policy implications in their Science paper.
"Seawater desalination is an energy-intensive process; desalinating seawater consumes significantly more energy than treating traditional fresh water sources," Phillip said. "However, these traditional sources aren't going to be able to meet the growing demand for water worldwide. Several options already exist to augment fresh water sources -- including the treatment of low-quality local water sources, water recycling and reuse and water conservation, -- understanding where seawater desalination fits into this portfolio of water supply options is critical. Hopefully, our paper helps provide some of the information needed to inform the decisions of policy makers, water resource planers, scientists, and engineers on the suitability of desalination as a means to meet the increasing demands for water."
Phillip, who joined the Notre Dame faculty this year, is interested in examining how membrane structure and chemistry affect the transport of chemicals across a variety of membranes. Understanding the connection between functionality and property enables the design and fabrication of next generation membranes that provide more precise control over the transport of chemical species. These material advantages can be leveraged to design more effective and energy-efficient systems. Chemical separations at the water- energy nexus (e.g. desalination) is one area where this knowledge can be applied.
--
"The globe's oceans are a virtually inexhaustible source of water, but the process of removing its salt is expensive and energy intensive," said Menachem Elimelech, a professor of chemical and environmental engineering at Yale and lead author of the study, which appears in the Aug. 5 issue of the journalScience ("The Future of Seawater Desalination: Energy, Technology, and the Environment").
Creator | Menachem Elimelech*, William A. Phillip† (email: menachem.elimelech@yale.edu) |
---|---|
Publisher | Menachem Elimelech*, William A. Phillip† |
Type of document | Report |
Rights | Public |
File link |
http://physics.indiana.edu/~brabson/p310/WaterDesalEgy.pdf |
File link local | WaterDesalEgy.pdf (PDF, 654 Kb) |
Source of information | Science Magazine - Science 5 August 2011: Vol. 333 no. 6043 pp. 712-717 DOI: 10.1126/science.1200488 |
Keyword(s) | desalination |
Subject(s) | ANALYSIS AND TESTS , CHARACTERISTICAL PARAMETERS OF WATERS AND SLUDGES , DRINKING WATER , DRINKING WATER AND SANITATION : COMMON PROCESSES OF PURIFICATION AND TREATMENT , ENERGY , HYDRAULICS - HYDROLOGY , INDUSTRY , INFRASTRUCTURES , MEASUREMENTS AND INSTRUMENTATION , NATURAL MEDIUM , POLICY-WATER POLICY AND WATER MANAGEMENT , PREVENTION AND NUISANCES POLLUTION , RISKS AND CLIMATOLOGY , SANITATION -STRICT PURIFICATION PROCESSES , SLUDGES , TOURISM - SPORT - HOBBIES , WATER DEMAND |
Relation | http://www.sciencedaily.com/releases/2011/08/110804141757.htm |
Geographical coverage | n/a |